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Abstract. With a general Gaussian wave functicnal, we investigate the mass renormalization
in the sine-Gordon model. At the phase transition point, the sine-Gordon system tends to
a system of massless free bosons which possesses conformal symmetry.

The (1+1)-dimensional sine-Gordon model
££=%(a,,¢)2+%(cos Bb—1) (1)

has long been studied. The model is equivalent to the massive Thirring model [1], to
the two-dimensional Coulomb gas [2], to the continuum limit of the lattice x-y-z
spin-3 model [3], and to the massive 0(2) nonlinear o model [4]. Coleman discovered
that the energy of the vacuum state is unbounded from below when 87> 8. One may
ask if there is more information to be obtained from this phase transition condition.
We try to answer this question in this letter.

The sine-Gordon Hamiltonian takes the form

1,1 2
H=I %(x)dx=-|. {—2-172-1-5(%1—5) ""EE[COS ,qu—l]} dx. (2

Here we appeal to the variational approach with a general Gaussian functional
Y(¢;®, P, f)

=Ny expli | P00 ax=3 | | 600-0001/(x5)

x[¢(y)~P(y)]dx dy} (3)

where N, is the normalization factor, ®(x), P(x) and f(x, y) are variational para-
meterst. The expectation value of the Hamiltonian of (2) with respect to the wave
functional of (3) is given in [5] as

E(b, P,f')=I {%P2+%(i;:) -—%[Z cos B(I)—l]+-‘lif(x, x)} dx

- 5(x— x,yydxd 4

)] ( y)a.xayf (x, y) dx dy (4)
1 In view of the invariance of H in (2) under the transformation of ¢ -» ¢ +2n#/8, one may construct a
periodic Gaussian functional to minimize the energy. This problem requires a separate investigation
elsewhere, We are grateful for the referee’s remark on this point.
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where

z=exp{-E-5 (5,0 (5)

and f~'(x, y) denotes the inverse of f(x, y), i.e.
jf(n XN, y) dx' = 8(x - y). (6)

The minimum-energy configuration is clearly achieved with P(x)=0. As we are
interested in the vicinity of some value of @, we set a®/ox=0.

For simplicity in notation we choose a function f(x, y) of the form (a general
f{x, y) yields the same results)

f(x,y) =—21ﬂ_ _;[ dk v k*+m?cos kix - y) (N
with inverse
- 1 J cos k(x—y)
= | df——eat’ 8
%) o P (8

where m? is a variational parameter.
Minimizing the energy with respect to m” gives m® as a function of ® according
to following relations:

m?=aZ(m?) cos B (9)
2y _E_z 2
Z(m )=exp 3 IL(m*) (10}
with the notations
L(m?)=f(x, x)=—2~1;-T-J‘ dkVIE+m (11)
1 dk
L(m)=fYx, x =——-J——. (12)
=1 D= ) e
Substituting (9)-(12) intc (4) leads to the energy density £ as a function of &
1 m? m?-a
£(¢)=Efo(m2)—“4- L{m*) - 8 (13)

where m? is a function of ® through relations (9) and (10).

Now we investigate the behaviour of this effective potential. The condition of
vanishing derivative
2

%=%tan(ﬁ¢) =0 (14)
yields
B® = Nn N=0,£1,+2,.... (15)

We specialize at the vacuum sector N =0, and define a mass ¢ by
u?=m*(®=0) (16)
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which satisfies the relation

2
w=aZ(p)=a cxv{—% Il(uz)}- (17)
Next, the second-order derivative at =0 is
de 3
27|, = (18)

Hence the effective potential of (13} develops a minimum in the vicinity of ®=0 as
long as u?>0.

Introducing an upper cutoff A in the integral of (12), Z(u?) in (10) can be explicitly
evaluated as

Z(izz}=evpf=‘3—2}n YaT'A+Va N+ Z(u)) (19)
U an VZ(p?) |
or
Z(p?) = (Va A2 +Va AT+ Z ()00 20)

where y=p%/8a. Equation (20} can be numerically solved for a pair of parameters
(v, @A™?); the family of curves with Z(u?) = constant is depicted in the parameter
plane, see figure 1.

For a A™>< 4 we find that Z{u?) is only defined in the region y < 1. At the vertical
line y=1, Z(x”) tends to zero from the left, resulting in Coleman’s transition. For
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Figure 1. The phase diagram of the sine-Gordon model. The finite solutions of Z(u?) are
in the unshaded area. The curves of A, B, C correspond to Z(u*)=0.001, 0.01, 0.04
respectively. The boundary D represents the envelope of the family with Z: (#?) = constant.
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aA~2> 4, however, equation (20) allows 2 finite solution for Z (%) even in the region
v > 1, as shown by the unshaded area in figure 1. The boundary consists of the envelope
of the family Z(u?) = constant, explicitly

aA = (y+ 1) (y 1), (21)

Along the boundary the value of Z(u”) increases monotonously from zero at aA™>=4
to the limit value Z{(u% =e¢2=0.1353. Crossing the boundary induces a kind of
first-order transition. When B tends to zero, the Hamiltonian in (2) reduces to that of
a free boson field with the bare mass u,=vea. For finite 8, however, the perturbative
procedure does not work. In fact the general Gaussian wave functional modifies the
spectrum of the boson modes from |kf to vk*+ u? For small value of Z(u?) we can
neglect Z(u?) compared with &~ 'A” in the rus of (20), resulting in a rescaled form
for the mass u,

1= ol o/ 2A) T4 (22)
Contrasting to the semiclassical treatment, this result works for large 8 value, bearing
a close form with the renormalized tunnelling of the spin-boson system [6].

The physical meaning of the mass p can most convincingly be demonstrated by
investigating the behaviour of the spatial correlation function

C(x, y) =(¥|p(x)d(¥)|¥)|ax)-o0
=3/ 7% ) = Kef(x—y)] (23)
™

where K, denotes the conventional Bessel function. Then a correlation length emerges
defined as £ =pn". At long distance |x—y|» ¢ [7]

Clx—y)~[8m|x—y|/ ]2 e > V/%, (24)

When the parameters ¥, a A~> approach the vertical border y=1, aA™2<4 from the
left, the mass u becomes vanishingly small and the space scale ¢ tends to infinity, and
the sine-Gordon system corresponds to the system of massless free bosons which
possesses the conformal symmetry with the central charge ¢ =1 [8]. Therefore Cole-
man’s phase transition condition is also related to the conformal symmetry for such
a system.

This work was supported by the Science Foundation of National Education Committee.
The authors would like to thank Professor A O Barut for helpful discussions.
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