Mass renormalization in the sine-Gordon model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1992 J. Phys. A: Math. Gen. 25 L1039
(http://iopscience.iop.org/0305-4470/25/17/004)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.58
The article was downloaded on 01/06/2010 at 16:56

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Mass renormalization in the sine-Gordon model

Bo-Wei Xu \dagger and Yu-Mei Zhang \ddagger
\dagger Department of Physics, Shanghai Jiao Tong University, 1954 Hau Shan Road, Shanghai 200030, People's Republic of China
\ddagger Department of Physics, Tongji University, Shanghai, People's Republic of China

Received 3 February 1992

Abstract

With a general Gaussian wave functional, we investigate the mass renormalization in the sine-Gordon model. At the phase transition point, the sine-Gordon system tends to a system of massless free bosons which possesses conformal symmetry.

The ($1+1$)-dimensional sine-Gordon model

$$
\begin{equation*}
\mathscr{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}+\frac{\alpha}{\beta^{2}}(\cos \beta \phi-1) \tag{1}
\end{equation*}
$$

has long been studied. The model is equivalent to the massive Thirring model [1], to the two-dimensional Coulomb gas [2], to the continuum limit of the lattice $x-y-z$ spin- $\frac{1}{2}$ model [3], and to the massive $O(2)$ nonlinear σ model [4]. Coleman discovered that the energy of the vacuum state is unbounded from below when $\beta^{2}>8 \pi$. One may ask if there is more information to be obtained from this phase transition condition. We try to answer this question in this letter.

The sine-Gordon Hamiltonian takes the form

$$
\begin{equation*}
H=\int \mathscr{H}(x) \mathrm{d} x=\int\left\{\frac{1}{2} \pi^{2}+\frac{1}{2}\left(\frac{\partial \phi}{\partial x}\right)^{2}-\frac{\alpha}{\beta^{2}}[\cos \beta \phi-1]\right\} \mathrm{d} x . \tag{2}
\end{equation*}
$$

Here we appeal to the variational approach with a general Gaussian functional

$$
\begin{align*}
& \Psi(\phi ; \Phi, P, f) \\
& =N_{f} \exp \left\{\mathrm{i} \int P(x) \phi(x) \mathrm{d} x-\frac{1}{2} \int \tilde{\int}[\phi(x)-\Phi(x)] f(x, y)\right. \\
& \tag{3}\\
& \times[\phi(y)-\Phi(y)] \mathrm{d} x \mathrm{~d} y\}
\end{align*}
$$

where N_{f} is the normalization factor, $\Phi(x), P(x)$ and $f(x, y)$ are variational parameters \dagger. The expectation value of the Hamiltonian of (2) with respect to the wave functional of (3) is given in [5] as

$$
\begin{align*}
E(\Phi, P, f)= & \int\left\{\frac{1}{2} P^{2}+\frac{1}{2}\left(\frac{\partial \Phi}{\partial x}\right)^{2}-\frac{\alpha}{\beta^{2}}[Z \cos \beta \Phi-1]+\frac{1}{4} f(x, x)\right\} \mathrm{d} x \\
& -\frac{1}{4} \iint \delta(x-y) \frac{\partial^{2}}{\partial x \partial y} f^{-1}(x, y) \mathrm{d} x \mathrm{~d} y \tag{4}
\end{align*}
$$

\dagger In view of the invariance of H in (2) under the transformation of $\phi \rightarrow \phi+2 n \pi / \beta$, one may construct a periodic Gaussian functional to minimize the energy. This problem requires a separate investigation elsewhere. We are grateful for the referee's remark on this point.
where

$$
\begin{equation*}
Z=\exp \left\{-\frac{\beta^{2}}{4} f^{-1}(x, x)\right\} \tag{5}
\end{equation*}
$$

and $f^{-1}(x, y)$ denotes the inverse of $f(x, y)$, i.e.

$$
\begin{equation*}
\int f\left(x, x^{\prime}\right) f^{-1}\left(x^{\prime}, y\right) \mathrm{d} x^{\prime}=\delta(x-y) \tag{6}
\end{equation*}
$$

The minimum-energy configuration is clearly achieved with $P(x)=0$. As we are interested in the vicinity of some value of Φ, we set $\partial \Phi / \partial x=0$.

For simplicity in notation we choose a function $f(x, y)$ of the form (a general $f(x, y)$ yields the same results)

$$
\begin{equation*}
f(x, y)=\frac{1}{2 \pi} \int \mathrm{~d} k \sqrt{k^{2}+m^{2}} \cos k(x-y) \tag{7}
\end{equation*}
$$

with inverse

$$
\begin{equation*}
f^{-1}(x, y)=\frac{1}{2 \pi} \int \mathrm{~d} k \frac{\cos k(x-y)}{\sqrt{k^{2}+m^{2}}} \tag{8}
\end{equation*}
$$

where m^{2} is a variational parameter.
Minimizing the energy with respect to m^{2} gives m^{2} as a function of Φ according to following relations:

$$
\begin{align*}
& m^{2}=\alpha Z\left(m^{2}\right) \cos \beta \Phi \tag{9}\\
& Z\left(m^{2}\right)=\exp \left\{-\frac{\beta^{2}}{4} I_{1}\left(m^{2}\right)\right\} \tag{10}
\end{align*}
$$

with the notations

$$
\begin{align*}
& I_{0}\left(m^{2}\right)=f(x, x)=\frac{1}{2 \pi} \int \mathrm{~d} k \sqrt{k^{2}+m^{2}} \tag{11}\\
& I_{1}\left(m^{2}\right)=f^{-1}(x, x)=\frac{1}{2 \pi} \int \frac{\mathrm{~d} k}{\sqrt{k^{2}+m^{2}}} \tag{12}
\end{align*}
$$

Substituting (9)-(12) into (4) leads to the energy density ε as a function of Φ

$$
\begin{equation*}
\varepsilon(\Phi)=\frac{1}{2} I_{0}\left(m^{2}\right)-\frac{m^{2}}{4} I_{1}\left(m^{2}\right)-\frac{m^{2}-\alpha}{\beta^{2}} \tag{13}
\end{equation*}
$$

where m^{2} is a function of Φ through relations (9) and (10).
Now we investigate the behaviour of this effective potential. The condition of vanishing derivative

$$
\begin{equation*}
\frac{\partial \varepsilon}{\partial \Phi}=\frac{m^{2}}{\beta} \tan (\beta \Phi)=0 \tag{14}
\end{equation*}
$$

yields

$$
\begin{equation*}
\beta \Phi=N \pi \quad N=0, \pm 1, \pm 2, \ldots \tag{15}
\end{equation*}
$$

We specialize at the vacuum sector $N=0$, and define a mass μ by

$$
\begin{equation*}
\mu^{2}=m^{2}(\Phi=0) \tag{16}
\end{equation*}
$$

which satisfies the relation

$$
\begin{equation*}
\mu^{2}=\alpha Z\left(\mu^{2}\right)=\alpha \exp \left\{-\frac{\beta^{2}}{4} I_{1}\left(\mu^{2}\right)\right\} \tag{17}
\end{equation*}
$$

Next, the second-order derivative at $\Phi=0$ is

$$
\begin{equation*}
\left.\frac{\partial^{2} \varepsilon}{\partial \Phi^{2}}\right|_{\Phi=0}=\mu^{2} \tag{18}
\end{equation*}
$$

Hence the effective potential of (13) develops a minimum in the vicinity of $\Phi=0$ as long as $\mu^{2}>0$.

Introducing an upper cutoff Λ in the integral of (12), $Z\left(\mu^{2}\right)$ in (10) can be explicitly evaluated as

$$
\begin{equation*}
Z\left(\mu^{2}\right)=\exp \left\{=\frac{\beta^{2}}{4 \pi} \ln \frac{\sqrt{\alpha^{-1} \Lambda^{2}}+\sqrt{\alpha^{-1} \Lambda^{2}+Z\left(\mu^{2}\right)}}{\sqrt{Z\left(\mu^{2}\right)}}\right\} \tag{19}
\end{equation*}
$$

or

$$
\begin{equation*}
Z\left(\mu^{2}\right)=\left(\sqrt{\alpha^{-1} \Lambda^{2}}+\sqrt{\alpha^{-1} \Lambda^{2}+Z\left(\mu^{2}\right)}\right)^{2 \gamma /(\gamma-1)} \tag{20}
\end{equation*}
$$

where $\gamma=\beta^{2} / 8 \pi$. Equation (20) can be numerically solved for a pair of parameters ($\boldsymbol{y}, \alpha \Lambda^{-2}$); the family of curves with $Z\left(\mu^{2}\right)=$ constant is depicted in the parameter plane, see figure 1.

For $\alpha \Lambda^{-2}<4$ we find that $Z\left(\mu^{2}\right)$ is only defined in the region $\gamma<1$. At the vertical line $y=1, Z\left(\mu^{2}\right)$ tends to zero from the left, resulting in Coleman's transition. For

Figure 1. The phase diagram of the sine-Gordon model. The finite solutions of $Z\left(\mu^{2}\right)$ are in the unshaded area. The curves of A, B, C correspond to $Z\left(\mu^{2}\right)=0.001,0.01,0.04$ respectively. The boundary D represents the envelope of the family with $Z\left(\mu^{2}\right)=$ constant.
$\alpha \Lambda^{-2}>4$, however, equation (20) allows a finite solution for $Z\left(\mu^{2}\right)$ even in the region $\gamma>1$, as shown by the unshaded area in figure 1 . The boundary consists of the envelope of the family $Z\left(\mu^{2}\right)=$ constant, explicitly

$$
\begin{equation*}
\alpha \Lambda^{-2}=(\gamma+1)^{\gamma+1} /(\gamma-1)^{\gamma-1} \tag{21}
\end{equation*}
$$

Along the boundary the value of $Z\left(\mu^{2}\right)$ increases monotonously from zero at $\alpha \Lambda^{-2}=4$ to the limit value $Z\left(\mu^{2}\right)=\mathrm{e}^{-2}=0.1353$. Crossing the boundary induces a kind of first-order transition. When $\boldsymbol{\beta}$ tends to zero, the Hamiltonian in (2) reduces to that of a free boson field with the bare mass $\mu_{0}=\sqrt{\alpha}$. For finite β, however, the perturbative procedure does not work. In fact the general Gaussian wave functional modifies the spectrum of the boson modes from $|k|$ to $\sqrt{k^{2}+\mu^{2}}$. For small value of $Z\left(\mu^{2}\right)$ we can neglect $Z\left(\mu^{2}\right)$ compared with $\alpha^{-1} \Lambda^{2}$ in the rhs of (20), resulting in a rescaled form for the mass μ,

$$
\begin{equation*}
\mu=\mu_{0}\left(\mu_{0} / 2 \hat{\Lambda}\right)^{\gamma /(1-\gamma)} \tag{22}
\end{equation*}
$$

Contrasting to the semiclassical treatment, this result works for large β value, bearing a close form with the renormalized tunnelling of the spin-boson system [6].

The physical meaning of the mass μ can most convincingly be demonstrated by investigating the behaviour of the spatial correlation function

$$
\begin{align*}
C(x, y) & =\left.\langle\Psi| \phi(x) \phi(y)|\Psi\rangle\right|_{\Phi(x)=0} \\
& =\frac{1}{2} f^{-1}(x, y)=\frac{1}{2 \pi} K_{0}[\mu(x-y)] \tag{23}
\end{align*}
$$

where K_{0} denotes the conventional Bessel function. Then a correlation length emerges defined as $\xi=\mu^{-1}$. At long distance $|x-y| \gg \xi$ [7]

$$
\begin{equation*}
C(x-y) \sim[8 \pi|x-y| / \xi]^{-\mathrm{i} / 2} \mathrm{e}^{-|x-y| / \xi} \tag{24}
\end{equation*}
$$

When the parameters $\gamma, \alpha \Lambda^{-2}$ approach the vertical border $\gamma=1, \alpha \Lambda^{-2}<4$ from the left, the mass μ becomes vanishingly small and the space scale ξ tends to infinity, and the sine-Gordon system corresponds to the system of massless free bosons which possesses the conformal symmetry with the central charge $c=1$ [8]. Therefore Coleman's phase transition condition is also related to the conformal symmetry for such a system.

This work was supported by the Science Foundation of National Education Committee. The authors would like to thank Professor A O Barut for helpful discussions.

References

[1] Coleman S 1975 Phys. Rev. D 112088
[2] Mandelstam S 1975 Phys. Rev. D 113026
[3] Samuel S 1978 Phys. Rev. D 181916
[4] Luther A 1976 Phys. Rev. B 142153
[5] Ingermanson R 1986 Nucl. Phys. B 266620
[6] Chakravarty S and Leggett A J 1984 Phys. Rev. Lett. 525
[7] Gradshteyn I S and Ryzhik I M 1980 Tables of Integrals, Series, and Products (New York: Academic) p 963
[8] Belavin A A, Polyakov A M and Zamolodchikov A B 1984 Nucl. Phys. B 241333

