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Abstract. With a general Gaussian wave functional, we investigate the mass renormalization 
in the sine-Gordon model. At the phase transition point, the sine-Gordon system tends to 
a system of massless flee-bosons which possesses conformal symmetry. 

The (1 + 1)-dimensional sine-Gordon model 

has long been studied. The model is equivalent to the massive Thirring model [l], to 
the two-dimensional Coulomb gas [2], to the continuum limit of the lattice x-y-r 
spin-; model [3], and to the massive O(2) nonlinear U model [4]. Coleman discovered 
that the energy of the vacuum state is unbounded from below when pz > 8 m  One may 
ask if there is more information to be obtained from this phase transition condition. 
We try to answer this question in this letter. 

The sine-Gordon Hamiltonian takes the form 

Here we appeal to the variational approach with a general Gaussian functional 

W+;@,P,f) 

p ( x ~ ( x )  d x - l  2 J J  [ + ( x ) - w x ) I ~ ( x , ~ )  

x [ + ( y ) - W ) l d x d y ]  (3) 

where N, is the normalization factor, "(x), P(x)  and f ( x ,  y )  are variational para- 
meterst. The expectation value of the Hamiltonian of (2) with respect to the wave 
functional of (3) is given in [SI as 

I J @ '  a 
E ( @ ,  ef)= 1 [?+:(j-) - ~ [ 2  

t In view of the invariance of H in (2) under the transformation of 4-4+2nrr/p, one may construct a 
periodic Gaussian functional to minimize the energy. This problem requires a separate investigation 
elsewhere. We arc grateful for the referee's remark on this point. 
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where 

Z = e x p  ( ---f y --I (x, X I )  

and f - ’ ( x ,  y )  denotes the inverse of f ( x ,  y), i.e. 

f ( ~ , x ’ ) f - - I ( d , y )  dx’= ~ ( x - Y ) .  

( 5 )  

The minimum-energy configuration is clearly achieved with P(x)=O.  As we are 
interested in the vicinity of some value of @, we set &/ax = 0. 

For simplicity in notation we choose a function f (x,  y) of the form (a general 
f ( x ,  y )  yields the same results) 

f ( x ,  y )  =A [ dk cos k ( x  - y)  
L a  J 

with inverse 

1 COS k ( x - y )  
f - ’ ( x , ~ ) = - l  2a dk 

(7) 

where m2 is a variational parameter. 

to following relations: 
Minimizing the energy with respect to m2 gives m2 as a function of @ according 

m2=aZ(m2)cos p @  

with the notations 

Substituting (9)-(12) into (4) leads to the energy density E as a function of @ 
2 1 m2 m -a 

E(@)=-Io(m2) -- I , ( m 2 ) - -  
2 4 P2 

where m2 is a function of @ through relations (9) and (IO). 

vanishing derivative 
Now we investigate the behaviour of this effective potential. The condition of 

yields 

p@=N?r  N = O ,  *1,*2,. . . 
We specialize at the vacuum sector N = 0, and define a mass p by 

f i2 = m2(@ = 0) (16) 
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which satisfies the relation 

Next, the second-order derivative at @ = 0 is 

Hence the effective potential of (13) develops a minimum in the vicinity of @ = O  as 
long as p2> 0. 

Introducing an upper cutoff A in the integral of (12), Z(p’) in (10) can be explicitly 
evaluated as 

where y=,¶’ /Sr .  Equation (20) can be numerically solved for a pair of parameters 
( y ,  aA-’);  the family of curves with Z(p2) = constant is depicted in the parameter 
plane, see figure 1. 

For n K 2 < 4  we find that Z(@*)  is only defined in the region y <  1. At the vertical 
line y =  1, Z(p2) tends to zero from the left, resulting in Coleman’s transition. For 

50 

30 

20 

0.5 

.I‘ Li 
”i 0 

1 

Figure 1. The phase diagram of the sine-Gordon model. The finite solutions o f  Z(p ‘ )  are 
in the unshaded area. The curves of A, B, C wrrerpond to Z(p2)=0.CQl, 0.01, 0.04 
respectively. The boundary D represents the envelope ofthe family with Z(& =constant. 
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aA-*>4, however, equation (20) allows a finite solution for 2 ( p 2 )  even in the region 
y > 1, as shown by the unshaded area in figure 1. The boundary consists of the envelope 
of the family Z(p’)  = constant, explicitly 

a K 2  = ( y + l)?+’/( y - l)y-’. (21) 
Along the boundary the value of Z ( $ )  increases monotonously from zero at aA-’ = 4 
to the limit value Z(p2)  = e-’= 0.1353. Crossing the boundary induces a kind of 
first-order transition. When /3 tends to zero, the Hamiltonian in (2) reduces to that of 
a free boson field with the bare mass po=&. For finite p, however, the perturbative 
procedure does not work. In fact the general Gaussian wave functional modifies the 
spectrum of the boson modes from Ikl to m. For small value of Z(p ’ )  we can 
neglect Z(p2) compared with K I A 2  in the RHS of (20), resulting in a rescaled form 
for the mass p, 

Contrasting to the semiclassical treatment, this result works for large p value, bearing 
a close form with the renormalized tunnelling of the spin-boson system [6 ] .  

The physical meaning of the mass p can most convincingly be demonstrated by 
investigating the behaviour of the spatial correlation function 

where KO denotes the conventional Bessel function. Then a correlation length emerges 
defined as 5 = p-’. At long distance I x - y /  >> 5 [7] 

c ( ~ - ~ )  -[sTlx - y l / c ] - i ; 2  e-ix-yii5 (24) 

When the parameters y, u A - ~  approach the vertical border y =  1, a K 2 < 4  from the 
left, the mass p becomes vanishingly small and the space scale 5 tends to  infinity, and 
the sine-Gordon system corresponds to the system of massless free bosons which 
possesses the conformal symmetry with the central charge c = 1 [SI. Therefore Cole- 
man’s phase transition condition is also related to the conformal symmetry for such 
a system. 

This work was supported by the Science Foundation of National Education Committee. 
The authors would like to thank Professor A 0 Barut for helpful discussions. 
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